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Abstract

This project uses evolutionary multi-objective optimization to generate urban
fabrics with improved proximity and walking distances than the current Masdar model.
Beginning with analyzing the outcomes of different urban design configurations from
the orthogonal and non-orthogonal grid typologies. We have used specifically designed
computational tools to

measure the

shortest physical distance
between locations in Masdar city, also a computational multi-optimization framework has

been developed that will enable the generation of optimal urban grid layouts. In
our proposal, the definition of a street network has been reimagined using new rule-sets to
create an adaptive and inorganic street network that is robust in finding in itself optimal

configurations for improved proximity and shorter distance of travel to the required
amenities.
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1. Introduction

Walkability in Urban Design

Walkability refers to the extent to which the built environment supports and encourages walking. This can be achieved by providing for pedestrian comfort and safety,
connecting people with various destinations within a reasonable amount of time and effort, and offering visual interest during the journey. There is a general consensus that an
area will encourage walking if it has a high degree of proximity (i.e. many functions are within walking distance) and connectivity (i.e. allowing easy and direct routes between
destinations). Southworth (2005 p. 249) suggest that "Factors that contribute to walkability include a dense network of footpaths, good linkages with public transportation, a mix
of land uses, safety (from crime and road accidents), and high environmental quality with good street design and visual interest". The grid street network in is a system of
regularly spaced streets and intersections that form a rectangular pattern. This system is often used to lay out cities, towns, and neighborhoods and has a long history dating
back to ancient civilizations. The grid pattern was first used in ancient Babylon and was later adopted by the Romans, who used it to lay out their military camps and towns. The
grid pattern was also used in the design of many medieval European cities, such as Paris and London. A grid network can make it easier for pedestrians to navigate and find
their way to their destination, as the regular pattern of streets and intersections allows for a clear and logical path. This can make walking more convenient and attractive for
residents and visitors. However, the grid pattern has also been criticized for its lack of flexibility and for not taking into account the natural features of the landscape. A grid
network can also create long blocks and intersections, which can be intimidating or unpleasant for pedestrians to cross, especially if there is heavy vehicle traffic, and can also
result in a lack of visual interest and a monotonous streetscape, which may discourage walking. In general, the grid system is adequate for walkability, but its other draw-backs
limits it from being an efficient network system. Computational optimization (CO) approaches are increasingly employed to address challenging design problems, even though
CO applications at the urban design scale have been limited compared to architecture due to enhanced complexity and computation requirements. Genetic algorithms are a
type of computational optimization algorithm that can be used to solve complex problems, including those related to urban design and walkability. In the context of walkability
optimization, genetic algorithms could be used to find the most efficient arrangement of streets, sidewalks, and other pedestrian infrastructure in order to minimize the distance
that people need to walk between destinations. To use a genetic algorithm, a set of "chromosomes" representing different city layouts would be created and evaluated based on
fitness criteria related to walkability. The chromosomes that perform best according to the fithess criteria would be selected to "breed" and create a new generation of
chromosomes, which would be evaluated in the same way. This process would be repeated over multiple generations until an optimal layout is found. Genetic algorithms are
well-suited for solving multi-objective optimization problems, such as those related to walkability, as they can handle a large number of variables and constraints and can adapt
to changing environments. Overall, genetic algorithms could be a useful tool for optimizing walkability in urban design by finding efficient and convenient arrangements of

pedestrian infrastructure.



2. Background

How can we improve Walkability in Masdar City?

The grid system was used in the spatial design of the existing Masdar development, which

highlights improving walkability as a principal consideration for this choice, however the
LRT current Masdar proposal fails to tackle the other inherent issues of the grid system. Our
approach to this brief is to design the city of Masdar as a walkable city and reimagine the grid as
an inorganic network breaking away from the regular and the repetitive to create a highly
dynamic and inter-connected organic network that will improve the issue of walkability
in Masdar city and eliminate the evident drawbacks of the grid system that has been adopted.

How would we design a grid for walkability? Looking at the existing Masdar plan we can observe

@ that the system was not designed with walkability as the primary objective but rather bus transit

|

|

500m 150m M
Shops

Green Spaces Green Fingers stations have been introduced at 150m proximity from points to reduce walking distances from

: the point of travel to the transport stations, This 150m proximity doesn’t take into consideration
' the distance based on the existing spatial layout in Masdar, upon testing the Masdar model
Playground using the shortest walk algorithm, the walking distances were discovered to be larger than

150m due to the existing spatial configuration. The Masdar model shows a weakness in that it

Q\f does not directly address the issue of improving walkability, but places transport stations at

o mi’;‘? @ T within proximity to the pedestrians. The Masdar spatial layout also lacks the non-linearity, self-

place of worship

Neljioihiod Centie organisation and emergence that adaptive and evolutionary systems exhibit. Our project
redesigns Masdar city, making walkability the goal and the driver for the whole design evolution.
We have emptied the current Masdar city of all its existing features and reimagining it as a
virgin site so we can re-define a new approach for what a walkable Masdar city is. Our design is
derived from using multi-objective optimization to minimize the walking distances from
any point in the city to the required ammenity by utilizing the shortest walk algorithm in

the grasshopper environment to generate data for optimization.



How can we improve Walkability in Masdar City?

Proximity of 150m does not translate to shorter walking times.

Walking distances are increased due to spatial layout of city.

-—————



3. Methodology

= L ST ‘gf"’“
DA
N UNVEEeT SN Ny
\‘0\\ \.: . "\i\ : ) \
/ o -‘ / /) /\ s
. A




3.1 Testing Criteria

Building on the idea of walkability vs proximity in the urban environment. This

study utilises a grasshopper plug in, shortest walk.

As shown in model (left) the plug in takes a straight line between points and
computes the shortest walkable path through the network. This plug in allows
us to test the truth of Masdar’s accessibility through the context of its spatial
layout. Further, we can use this function to develop a consistent testing

methodology to be applied in future design models.

First, the shortest walk plug in is used to develop a tool that tests the walkable
distances to the closest placed node with n a network, for all cells. This is
developed, parametrically such that Galapagos , a machine learning
optimization tool, can control the placement of nodes to seek the optimal

results for standard deviation, average or maximum walking distances.



Transport Proximity

3 Here, the code highlights the proximity
vs walkability concept. proximity lines
are calculated by drawing lines
between each centroid and the
evaluated closest transport node. The
resultant collection of lines is fed into
the shortest walk plug-in tool and
generates the following modelled
shortest walk paths
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@ Curve
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Parameter [l Angle N

Evaluate Curve

[Number siider | 01500

| |
1 This section of the code uses a gene pool to select the list by 2  This section again uses a gene pool this time the genomes
index in the list of grid lines. Remapping the large range of exist in the range O to 1 with 3 d.p. the curves are
gene pool to the length of the list means that the algorithm is reparametrized and the geneome is value is used to select
robust for generative grid designs. the location of transport nodes along selected lines.
In this instance 10 genomes are selected representing 10 Thus, allowing up to 1000 permutations of node location per
lines for transport nodes, as shown in the model images. line.



Green Space Proximity

In this instance the the shortest walk plug in is
again utilised to develop a quantification of green

space accessibility.

Again the calculations of this model are utilised
as fitness criteria for design optimisation, with the
genomes being locational parameters of chosen

green space cells.
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3 import rhinoscriptsyntax as rs

4 - . .

5 centroid = [] 2 This Python component utilizes the list permutations from
6 index = []

7 areaCount = 0
81=20 and adding the area to a total area, continually check if the
9

10 while i < length

11

12 pickIndex = locationList[il
i3 pick = areal[pickIndex] required.
14 loc = Locs[pickIndex]

1L

16 if (pick + areaCount) < targ

117/

18 areaCount = areaCount + pick

19 centroid.append(loc)

20 index.append(pickIndex)

240!

the function below. Doing so, it picks the cell of each index

cumulative are is below the target. Producing a series of cells

of which the total area is as close to the percentage coverage

22

-
c
Point x Closest Point

CP Index

Clowd Wlloistance D

1 import rhinoscriptsyntax as rs

: : . 2
1 Applying a ‘shuffling’ algorithm to the list S count = ctartlloc

4 newList = []

index, allows for control over list variations.
This algorithm has two parameters, starting
index and step values, both values are
remapped to within the length of the index list,
thus allowing for the number of possible

permutations to = (list Length)?

5

6 a=0

7 1=0

8

9
10 while i < length:
11

12 if (count + steps) > length:
13 count (count + steps) — length

14 elises

15 count = count + steps
16

17 newList.append(count-1)
18 i= i+l

19







3.2. Testing Masdar

The previous models represent the existing spatial and transport
networks of the Masdar proposal. Computing this data with the
quantification tools developed for walkability and accessibility we can

critique the claims of the Masdar masterplan.

Further, applying Galapagos machine learning optimisation we can
seek improvements the results of the proposed Masdar design, by
making use of the parametric design solutions. The following pages

showcase the visual implications when applying this testing criteria.

On the right, shows a vision for an improved Masdar masterplan with

optimally reduced walking distances.

13
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node modelling, we can seek optimal

improvements in the node location in

Masdar for reduced walking distances and

reduced standard deviation of results.

The comparison models showing the cells

‘served’ by each transport node. It is

evident that the optimised model (right)

has an improved functionality of proximity

based locations.
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in green space proximity for design coverages

of 10% and 40%

- Its intuitive that the greater

coverage will have a reduced proximity/

Although this modelling also highlights the

importance of placement of green space. The

model bottom left shows a poor deviation of

proximity, with the majority of Masdar being

served by just two cells in the south west.
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3.3. Designing a gria

The next step in improving the walkability of Masdar is to rethink and redesign the spatial layout. To do so we must develop a

generative network design, such that it can can morph and conform to optimal walkability. If we wish to use the same testing

methods the grid design must be equally parametric, so how can we parameterise an organic design ?

FRANCISCO PARIS
Historical grids ' B | A ORORNA
g AN
Grid systems exist in many
s « =
permutations through age and Z:' n'; § ré'z‘ '\"’
global location. Walkability varies A ".,, g
2 S NG

across different designs, but R
almost none are primed for
pedestrianisation. Repetitive, cost
effective architecture and
automotive transport control the
narrative. So how do we start
again? What does a user centric
design consist of and how can we

make it organic?

3 SIS
' HSSE
A (2T CO8

2T

,4,*5;;,3




Repeat pattern grid

To follow the existing grid methodology, we can explore
geometrical influence by using alternative repeat

patterns. In this case the parameters would be control

over shape, number a recursion pattern

This is a cellular approach to a network system,

allowing for permutations and generative morphing.

17



3.4. Organic Network

Developing a control function for cellular network could look like the

following:

In this case, the control genomes are the x,y movement applied to the
centroids of a basic cell (image 1). As we recursively apply further movement
the geometry of each cell, the network starts to develop a more unique form.

Finally developing into an organic network, primed by testing criteria.

Although this method allows for unique generation and removes a lot of the
repetition issues of the modern grid system. It is still not free of control, the
number of cells in this series is pre set meaning the truly organic form we

seek is unattainable with this method.

A

[
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Cells and Lines

Seeking organic design, we must look beyond the cellular approach of the grid system and consider the form that cells depend upon. In the case of urban design, grid

systems are restricted and controlled by their paved networks. If we seek to parameterize the lines that form such networks we can provide greater generative control for an

optimised solution.

A

19



Recursive Line Approach

The recursive line approach was chosen as an alternative approach to cellular
networks. In this case a number of lines are generated crossing the site, with the start
and end point parametrised as geonomes. Thus allowing minimal influence when

seeking organic design. These generated lines divide the surface area into small

surfaces, of which the same process is carried out

As shown this approach aims to be a recursive one, continually repeating the
simplistic line generation and surface division. Developing the network in the context
of an urban environment, control for minimal surface size prevents further division for

unbuildable plot sizes.

Final plots add pathways, connecting the centroids of each plot directly to the

bordering lines.

Yes

20



il
i




Control

Allowing generative freedom is a major part of this designs methodology so we seek
minimal control. Although complete freedom can lead to self destructive solutions,
solutions in which no lines are present, representing a null grid. To prevent this a
simplistic yet robust logic system ensures that every line is developed inside of bounding

lines. The logic flow is as follows:

Yes

J

:yes
No
No

o
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pointf@ = b[int] [0]
pointfl = b[int] [1]
pointf2 = b[int] [2]
removelList.append(pointf®)
removelList.append(pointfl)
removelList.append(pointf2)

__author__ = "felixmallinder"

import ghpythonlib.treehelpers as th
import Rhino.Geometry as geo

import scriptcontext

import rhinoscriptsyntax as rs

SN o s WN =

wlNdKeE new C O pPoO1n L0 P1C om

for value in removelList:

if value in newList:
newlList.remove(value)

1

def makeNewList(p):
for 1 in range(®@,b.Count):

(R RV RV RV NV . RV . NV, NV,
SN o s WN e

S WO 0
> WO 00

(e W)
()

if p in b[i]:
ext = b[i].Count
removePoints(b[i])

W N =
(o)W )]

return newlList

(o M «))

Fremove o LOC 1!
if 1 == b.Count-1:
int = @
else: int i+1
pointZero = b[int] [0]
removeList.append(pointZero)

removePoints(points):
for point in points:
removelList.append(point)

~SNoom s

(o)W«
NN B WN =
Q.
m
—h

'O WO 00
NN OO
S W 00

~SNoUesE WN =S

genePick
if p == b[i] [0]: lineList []

AL 1X pol1ln

N N~

if 1 == 0:

int = b.Count -1
else: int = 1 -1
removePoints(b[int])

for i in range(x.BranchCount):
branchList = x.Branch(1i)

~SNoUs WN -

O 00

allPoints = []
b =[]

e S TN R Gy |

S W 0
0
(&)

elif p == b[i]l [1] or p == b[i] [2]:

in first 2 ind

for j in range(branchList.Count):
s = str(branchList[j])
length = rs.CurvelLength(s)

0 00 00

if 1 == 0:
int = b.Count -1
else: int =1 -1

0 00 O

O
N~ b WN =

if length > nodeSpacing*2:
subList = []
points = rs.DivideCurve(s,length/nodeSpacing) #divi

0 00

~SNosS WN =

ext = bl[int].Count #need

pointExtl = b[int] [ext-1]
pointExt2 = b[int] [ext-2]
removelList.append(pointExt1) ] for p in points: #pu
removelList.append(pointExt2) subList.append(p)
' allPoints.append(p)

" O WO 00

elif p == b[i] [ext-1] or p == b[i] [ext-2]:
# if in last 2 remove Oth first and second from next list subList.pop()
' allPoints.pop()
if 1 == b.Count-1: b.append(subList)
int = @
else: int = i + 1 linepoints = []

SO ESE WN b

0o

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4

w
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[Iines per itteration ] ©2

Number Siider | 10

(| surface ; X ‘% out
§ Frag ‘ List (B8 List A Brep [flll Interior lines 8
c .
[ - G < RS E 3 . 2 borderLines )
8 Di: KN st D - Non-Manifold nodeSpacing
P o E.
r—la
4 o

J

D
 Area]
T

]

Geometry

Shader
Colour Swatch

[ Number siider | 70 D==(Thickness

q

Custom Preview Lineweight

# ———— Tor number of ine
for k in range(®@, lines):
removeList = []

newList = list(allPoints)
#p1CcK T1irst polint using
pickPoint = y[genePick]
genePick = genePick +1
remapV = round((pickPoint*(len(allPoints)-1))/100)
pointl newList[int(remapV)]
This block of grasshopper is repeated in series for recursion of nested lines.
#make new L1ST O )o1nts, removing
newList = makeNewList(pointl) The ‘new lines’ output fed into the curves input of ‘surface split’ in the next

plckPomt— y[g‘e;ep‘lck] JEREIpRotianG Cecuced Jpu iDL, generation and the surface input is always the Masdar plot.

genePick = genePick +1

remapV = round((pickPoint*(len(newList)))/100) #100 is genepoo : Due to processing power limitations, the current code uses a maximum of 4

print int(remapV), newList, pointl

point2 = newList[int(remapV)] recursions. Similarly, the code and computing power limits the generative
#create line from both points freedom — the ‘lines per iteration’ slider isn’t independently chosen for each cell
start = geo.Point3d(pointl)

end = geo.Point3d(point2) in a subdivision. le. The 2n generation cells will all have 2 dividing lines in this
line = rs.AddLine(start, end)

lineList.append(line) case. For a more organic design, complete freedom would programmed. The

final mode uses a 4-3-2-1 design, 4 lines for the first recursion, down to 1 line

= lineList ' for the final recursion.
orderLines = allPoints
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3.5. Multi Objective Optimisation

A multi-objective optimization problem is one in which it is not possible to optimize all objective functions simultaneously, so a Pareto optimal or non-dominated solution is
one where no objective function can be improved without worsening the others. Multi-objective optimization was used in exploring the performance of our organic grid
network with respect to three objectives: the shortest walk to transport nodes, the shortest walk to green open spaces and the maximum cell size. We considered two
different multi-objective optimization tools for this study: Octopus, which uses the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and fast hypervolume-based many
objective optimization algorithm (HypE); and Wallacei X, which uses the Nondominated Sorting Genetic Algorithm Il (NSGA-Il). We ultimately chose to use Wallacei X
because it does not depend on initial solutions to converge to optimal solutions, has good computational time, and is less prone to getting stuck in suboptimal solutions.
Additionally, the Wallacei interface and data access capabilities provided us with more flexibility in our analysis. Wallacei X optimization works with minimization formula; it

tries to bring all fitness values towards zero, In order to maximize the fitness values, an inverse of the number will need to be computed before it is fed to the Wallacei X

engine.

Multi-objective fitness criteria
(Minimize Values)

nmmmnTTT “i> 1.) Maximum shortest walk
fo fransport node

=12 ) Standard deviation of
maximum shortest walk

17 3.) Maximum cell size

---I> 4)) Standard deviation of
maximum cellsize

TR 5.) Maximum shortest walk to
green space

e ;
6.) Green space maximum
cell size.

Wallacei Genomes

Genes

Fitness Values

Objectives | ¢

Data | = | Data

== <q[¥] Phenotype | s

Phenotypes
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MO Optimization 1 Phenotypes (Fitness Values)

Disproportionate Large cell

Results indicated a concentration of Large
cells at the center of the neighborhood and a
spread of smaller cell on the borders. This
was not a desirable result as with a street
network we desire to have a more even

distribution of cell blocks.

e =S == == == == == == == == == == == =
EENE BN DI BEEE  BEEE BIE E  BE  E  Ea E E a

Compact Organic Grid system

On the addition of standard deviation of
fitness values as a multi-objective fithess
criteria, the results of the organic grid system
were mostly compact and well distributed
cells were achieved which was acceptable for

further analysis

ST mE mEm mm = EE IR EE EE EE .y
_ O - e Ea R D A e O s e e
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4. Results

The standard deviation represents the distribution of a set of values from the mean. A low standard deviation factor indicates that most values are clustered around the mean
(less variation within the population), while a high standard deviation factor indicates that the values are spread out farther from the mean (more variation within the
population). The aim of the chart is to present and analyse the levels of variation/convergence for each generation in the population, as well as whether the generations are
getting fitter throughout the simulation. Increased variation is represented through a 'flat ' curve, while increased convergence is represented through a 'narrow' curve. A shift

in the curve to the left indicates better mean performance.

Standard Deviation Graph Standard Deviation Graph

Last Gen Last Gen

___’C:: = S e First Gen ___._—‘f/ = i First Gen
-12965 -837 37.76 819 5494 100.08 14603 19198 23793 28387 32982 37577 aan 41327 30092 -188.57 76.22 36.13 14848 26083 37318 48553 59788 71023 82258 93493
Fitness Value Fitness Value
Maximum Shortest Walk to Transport Node Maximum Shortest Walk to Green Space
Standard Deviation Graph Standard Deviation Graph
Last Gen Last Gen

/ \\
/ \
— _‘\\\
N — First Gen \\\ First Gen

]
//
[/
93586 68685 49 4378497 1888426 601606 3091657 55817.09 807176 105618 12 13051863 15541915 10031966 20522017 -92062 -603.81 .287 2981 346,62 66344 980.25 1297.06 161387 193068 224749 25643 288111
Fitness Value Fitness Value

Standard Deviation of Maximum shortest walk to Transport Node Standard Deviation of Maximum Shortest Walk to Green Space
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Standard Deviation Graph

Last Gen

\\
o o ———— . First Gen
50645 -3067  -10696 9278 29252 49226 692 89174 109148 129123 149097  1690.71 189045

Fitness Value

Maximum Cell Size

Standard Deviation Trendline
49801.03

46035
42268.96
38502.93
347369
30970.87
2720483
2343838

Standard Deviation Factor

19672.77
15906.73

12140.7

Generation
transport distance SD

Standard Deviation Graph

Last Gen

First Gen

2009384 330286 673NEE %209 6547008 THI06 1AM 2646302 330084 ITAIE HIBISSE  SIEM  SHSTR

Fitness Value

Standard Deviation of Maximum Cell Size

Standard Deviation Trendline
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| ! : : when the lines picked by the algorithm

| | ! ! . .
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! | . . position, as a result no further division is
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! I ! ! possible by the cell system. The second
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FV. 6:1402.525871 . . . .
limitations were an oversight from the

rules developed by the street
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! ! ! ! network generator, but due to our aim of
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| | ! ! exploring a truly organic system without
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FV.5:478.355098 FV.5:227.74175
FV.6:1463.777781 FV.6:812.91929

34



Large Cell Phenomenon
The Large cell pattern occurs when the
cell and a lot of minimal cells and tries to

optimize the fitness values majorly for

the large cell. This results in a cell which
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Gen: 99| Ind: 15 Gen: 99| Ind: 33

FV.1:12077.560194 FV.1:32166.323146

FV.2:248.938934 FV.2:164.209591

FV.3:133773.467675 FV.3:225786.577539

FV.4:967.439794 FV.4:900.470546
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Gen: 99| Ind: 7

FV.1:
FV.2:
FV.3:
FV.4:
FV.5:
FV.6:

Gen: 99| Ind: 0

FV.1:
FV.2:
FV.3:
FV.4:
FVLi5i
FV.6:

6807.357226
330.372964
41904.83234
1285.835645
170.472584
789.055373

4711.835227
200.489716
26130.142586
739.755001
242.87914
1174330815
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Gen: 99 | Ind: 22
FV. 1: 6806.576759

FV. 2331526589

FV. 3:41904.83234
FV.4:1285.835645

FV. 5: 174021061

FV. 6:789.055373

Gen: 99| Ind: 35
FV. 1:10947.218916
FV.2: 100547783
FV.3:67618.673692

FV. 4 :376.355551
FV.5:381.251453

FV. 6 1413.563834

Dispersed Pattern

The dispersed pattern occurs when the
cells are divided, and the area threshold
allows for the third-degree division
stage. The genetic optimization divides
most cells into the third-degree division
stage and optimizes the network based
on each individual cell. This results in an
even distribution of average walking
distances for each cell and average
similar area for each cell. This is the
desirable result and would be discussed

further in the section.
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o. Final Solution
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Final Solution : Transport Nodes and Green Spaces
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0. Discussion

Limitations, Control, and Improvements

As previously discussed, when tested the model tends to one of 3 forms of
interest; minimal, large cell and dispersed. Minimal and large cell can both be
put down to defects is the model, minimal model occurs due to the lines
occurring directly on top of each other giving the effect of less lines and cells.
Large cell phenomenon occurs when the model promotes one cell over taking
a proportion of the grid, effectively isolating a large section of the area - this
occurs due to the testing criteria using the centroid of cells for walkability
measurements, so the expansion of area in the isolated section aren’t

considered in calculations.

Due to these defects, the model was programmed to reduce the standard
deviation and maximum cells sizes, in an attempt to create an evenly
dispersed division of area, one that closer represents a city grid. This resulted
in the dispersed cell model, of which the final design took its form. On one
hand this felt logical for application of design and represented a true built
environment, avoiding disproportionality large or small buildings. Although,
considering the scope of this project and the desire for truly organic design,
these controls could be considered restrictive, especial since the logic is

based of the current grid system.

It’s important to remember were trying to reconceptualise the design of a
street network, abstract form, and lack of resemblance to other city grids isn’t
a failure of the model it’s in fact proof of concept for organic form, as well as a

statement for the ineffective nature of or ridged grid systems. The result of
this project shouldn’t be a fully functional city design but a vision that

provokes and challenged existing urban design.

Future Expansion

This study evidence the application for walkability considerations in urban,
generative design. It has been shows how consideration for access to
transport and green space can be used in shaping the city, but these are just
two of the many aspects that make a city walkable and accessible. If we wish
to greater develop this study and our vision of Masdar, further consideration
for access to other amenities would be considered — applying a purpose driven

cells we could quantify accessibility of shops, school, health care, recreational

spaces and more.

Further, for greater application in real world development, qualitative ranking
of desired proximity could be applied to different assets. Thus, allowing a

tailored approach to the organic design and providing a application for a

diverse range of cities and functions.

The renders show a vision for a walkable city, but the design is by no means
complete. Growth, land use and scale must be decided by other parameters
and testing outwith the scope of our investigation. But instead, what we show
case here is the capabilities for something organic, Masdar presents an
opportunity to design from scratch and we believe an ideal model for user

centric design can be birthed from the organically generated modelling.
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